Авиация Гиперзвуковая скорость - Характеристики потока

22 января 2011


Оглавление:
1. Гиперзвуковая скорость
2. Характеристики потока
3. Параметры подобия
4. Список режимов



В то время как определение гиперзвукового потока достаточно спорно по причине отсутствия четкой границы между сверхзвуковым и гиперзвуковым потоками, ГП может характеризоваться определенными физическими явлениями, которые уже не могут быть проигнорированы при рассмотрении, а именно:

  • тонкий слой ударной волны;
  • образование вязких ударных слоев;
  • появление волн неустойчивости в ПС, не свойственных до- и сверхзвуковым потокам;
  • высокотемпературный поток.

Тонкий слой ударной волны

По мере увеличения скорости и соответствующих чисел Маха, плотность позади ударной волны также увеличивается, что соответствует уменьшению объема сзади от УВ благодаря сохранению массы. Поэтому, слой ударной волны, то есть объем между аппаратом и УВ становится тонким при высоких числах Маха, создавая тонкий пограничный слой вокруг аппарата.

Образование вязких ударных слоев

Часть большой кинетической энергии, заключенной в воздушном потоке, при М > 3 преобразуется во внутреннюю энергию за счет вязкого взаимодействия. Увеличение внутренней энергии реализуется в росте температуры. Так как градиент давления, направленный по нормали к потоку в пределах пограничного слоя, приблизительно равен нулю, существенное увеличение температуры при больших числах Маха приводит к уменьшению плотности. Таким образом, ПС на поверхности аппарата растет и при больших числах Маха сливается с тонким слоем ударной волны вблизи носовой части, образуя вязкий ударный слой.

Появление волн неустойчивости в ПС, не свойственных до- и сверхзвуковым потокам

В важной проблеме перехода ламинарного течения в турбулетное для случая обтекания летательного аппарата ключевую роль играют волны неустойчивости, образующиеся в ПС. Рост и последующее нелинейное взаимодействие таких волн преобразует изначально ламинарный поток в турбулентное течение. На до- и сверхзвуковых скоростях ключевую роль в ламинарно-турбулентном переходе играют волны Толмина-Шлихтинга, имеющие вихревую природу. Начиная с М = 4,5 в ПС появляются и начинают доминировать волны акустического типа, благодаря которым происходит переход в турбулентность при классическом сценарии перехода.

Высокотемпературный поток

Высокоскоростной поток в лобовой точке аппарата вызывает нагревание газа до очень высоких температур. Высокие температуры, в свою очередь, создают неравновесные химические свойства потока, которые заключаются в диссоциации и рекомбинации молекул газа, ионизации атомов, химическим реакциям в потоке и с поверхностью аппарата. В этих условиях могут быть существенны процессы конвекции и радиационного теплообмена.



Просмотров: 3904


<<< Газоструйные излучатели
Горение и взрыв газа >>>