Авиация Гиперзвуковая скорость - Список режимов

22 января 2011


Оглавление:
1. Гиперзвуковая скорость
2. Характеристики потока
3. Параметры подобия
4. Список режимов



Гиперзвуковой поток подразделяется на множество частных случаев. Отнесение ГП к одному или другому режиму потока представляется сложной задачей по причине «размытия» границ состояний, при которых это явление в газе обнаруживается или становится заметным с точки зрения используемого математического моделирования.

Идеальный газ

В данном случае, проходящий воздушный поток может рассматриваться как поток идеального газа. ГП в данном режиме все еще зависит от чисел Маха и моделирование руководствуется температурными инвариантами, а не адиабатической стенкой, что имеет место при меньших скоростях. Нижняя граница этой области соответствует скоростям около 5 М, где СПВРД с дозвуковым сгоранием становятся неэффективными, и верхняя граница соответствует скоростям в районе 10—12 М.

Идеальный газ с двумя температурами

Является частью случая режима потока идеального газа с большими значениями скорости, в котором проходящий воздушный поток может рассматриваться химически идеальным, но вибрационная температура и вращательная температура газа должны рассматриваться отдельно, что приводит к двум отдельным температурным моделям. Это имеет особое значение при проектировании сверхзвуковых сопел, где вибрационное охлаждение из-за возбуждения молекул становится важным.

Диссоциированный газ

В данном случае молекулы газа начинают диссоциировать по мере того, как они вступают в контакт с генерируемой движущимся телом ударной волной. Поток начинает различаться для каждого конкретного рассматриваемого газа со своими химическими свойствами. Способность материала корпуса аппарата служить катализатором в этих реакциях играет роль в расчете нагрева поверхности, что означает появление зависимости гиперзвукового потока от химических свойств движущегося тела. Нижняя граница режима определяется первым компонентом газа, который начинает диссоциировать при данной температуре торможения потока, что соответствует азоту при 2000 К. Верхняя граница этого режима определяется началом процессов ионизации атомов газа в ГП.

Ионизированный газ

В данном случае, количество потерянных атомами электронов становится существенным и электроны должны моделироваться отдельно. Часто температура электронного газа рассматривается изолировано от других газовых компонентов. Этот режим соответствует диапазону скоростей ГП 10—12 км/с и состояние газа в данном случае описывается с помощью моделей безызлучательной или неизлучающей плазмы.

Режим доминирования лучевого переноса

На скоростях выше 12 км/с передача тепла аппарату начинает происходить в основном через лучевой перенос, который начинает доминировать над термодинамическим переносом вместе с ростом скорости. Моделирование газа в данном случае подразделяется на два случая:

  • оптически тонкий — в данном случае предполагается, что газ не перепоглощает излучение, которое приходит от других его частей или выбранных единиц объема;
  • оптически толстый — где учитывается поглощение излучения плазмой, которое потом переизлучается в том числе и на тело аппарата.

Моделирование оптически толстых газов является сложной задачей, так как из-за вычисления радиактивного переноса в каждой точке потока объем вычислений растет экспоненциально вместе с ростом количества рассматриваемых точек.



Просмотров: 2558


<<< Газоструйные излучатели
Горение и взрыв газа >>>