Авиация Двигательная установка космического аппарата - Эффективность
23 января 2011Оглавление:
1. Двигательная установка космического аппарата
2. Назначение
3. Эффективность
4. Типы двигательных установок
5. Сравнение двигательных установок
Основная задача двигательной установки — изменять скорость космического аппарата. Поскольку требуемая для этого энергия зависит от массы аппарата, конструкторы используют понятие импульса, равного произведению массы на скорость. Таким образом, двигательная установка изменяет импульс космического аппарата.
Для аппаратов, двигательная установка которых работает на участке выведения, выбранный способ ускорения должен обеспечить преодоление земного притяжения — придать аппарату первую космическую скорость, которая для Земли составляет около 7,9 км/с. При движении вокруг планеты воздействие двигательной установки приводит к изменению орбиты аппарата.
Достижение заданной скорости может быть обеспечено короткими периодами включения двигательной установки при больших ускорениях либо длительными периодами включения с малыми ускорениями. При этом второй метод малопригоден для выведения аппарата в космос, так как трепует непомерных затрат энергии на преодоление планетарной гравитации. Однако тело, выводимое в космос, на начальном этапе траектории может, аналогично самолёту, использовать подъёмную силу крыла, пока не достигнет менее плотных слоёв атмосферы.
Для человека привычно воздействие гравитации, характеризуемой ускорением свободного падения примерно 9,8 м/с², или 1 g. Для пилотируемого аппарата идеальной двигательной установкой была бы система, обеспечивающая постоянное ускорение, равное этой величине, что устранило бы неприятные явления у экипажа: тошноту, ослабление мышц, вымывание кальция из костной ткани, потерю чувства вкуса. Однако обеспечить такое ускорение затруднительно: при выведении это привело бы к неэффективному расходу горючего, а в космосе не соответствовало бы основным задачам аппарата или приводило бы к слишком долгому времени полёта.
Закон сохранения импульса устанавливает, что при изменении импульса космического аппарата должен меняться импульс чего-то ещё, чтобы общий импульс системы был постоянным. Для двигательных установок, использующих энергию магнитных полей или давления света этой проблемы не существует, но большинство космических аппаратов вынуждены иметь на борту запас рабочего тела, за счет отбрасывания которого может меняться импульс самого аппарата. Двигательные установки, работающие на этом принципе, называются реактивными.
Для ускорения рабочего тела нужна энергия, которую можно получить из различных источников. В твердотопливных, жидкостных и гибридных ракетных двигателях энергия выделяется при химической реакции компонентов, а рабочим телом является образовавшийся в результате газ, под высоким давлением истекающий из сопла. В ионном двигателе для разгона частиц рабочего тела используется электрическая энергия, получаемая от солнечных батарей, ядерной силовой установки или из других источников.
При оценке эффективности реактивных двигательных установок используют понятие удельного импульса, равного отношению создаваемого импульса к расходу рабочего тела. В системе СИ удельный импульс имеет размерность «метр в секунду», но на практике чаще используется размерность системы МКГСС — «секунда».
Более высокий удельный импульс соответствует более высокой скорости истечения рабочего тела, однако энергия, требуемая для ускорения рабочего тела, пропорциональна квадрату скорости, из-за чего с увеличением удельного импульса падает энергетическая эффективность двигательной установки. Это является недостатком двигателей большой мощности, в результате чего большинство двигателей с высоким удельным импульсом имеют малую тягу, как, например электроракетные двигатели.
Просмотров: 6521
|