Авиация Клиновоздушный ракетный двигатель - Принципы

22 января 2011


Оглавление:
1. Клиновоздушный ракетный двигатель
2. Обычный ракетный двигатель
3. Принципы
4. История и текущее состояние
5. Фотогалерея



Сравнение обычного ракетного двигателя с клиновоздушным двигателем

В конструкции клиновоздушного двигателя проблема эффективности на различной высоте решается следующим образом: вместо одной точки выхлопа в виде небольшого отверстия в центре сопла используется клиновидный выступ, вокруг которого устанавливается ряд камер сгорания. Клин формирует одну сторону виртуального сопла, в то время как другая часть формируется окружающим воздухом. Этим объясняется его первоначальное название «двигатель аэроспайк».

Основная идея такой конструкции состоит в том, что на низкой высоте атмосферное давление прижимает отработанный газ к выступающему клину. Затем рециркуляция в основании клина поднимает давление до значения окружающей атмосферы. В силу такой конструкции, тяга не достигает предельно возможных значений, но также и не претерпевает значительного падения, которое происходит в нижней части традиционного сопла из-за частичного вакуума. По мере того, как аппарат достигает большей высоты, сдерживающее выхлоп окружающее давление уменьшается вместе с давлением на верхнюю часть двигателя, тем самым сохраняя его эффективность неизменной. Более того, несмотря на то, что окружающее давление падает практически до нуля, зона рециркуляции сохраняет давление до долей давления атмосферы на поверхности у основания, в то время как верхняя часть клина находится практически в вакууме. Это создаёт дополнительную тягу с ростом высоты, компенсируя падение окружающего давления. В целом, эффект сравним с традиционным соплом, которое имеет способность расширяться с увеличением высоты. В теории клиновоздушный двигатель немного менее эффективен по сравнению с традиционным соплом, сконструированного для данной высоты, и по сравнению с ним, более эффективен для любой другой высоты.

Недостатком такой конструкции является большой вес центрального выступа и дополнительные требования по охлаждению из-за большей поверхности, подверженной нагреву. Также большая охлаждаемая площадь может уменьшить теоретические уровни давления на сопло. Дополнительным отрицательным фактором является относительно плохая производительность такой системы при скоростях 1-3 М. В данном случае воздушный поток сзади летательного аппарата имеет уменьшенное давление, что снижает тягу.

Возможные варианты

Существует несколько модификаций этого дизайна, которые отличаются по их форме. В тороидальном клине центральная часть имеет форму сужающегося конуса, по краям которого осуществляется концентрический выход реактивных газов. В теории такая конструкция требует бесконечно длинного центрального выступа для наилучшей эффективности, но использование части выхлопа в радиально-боковых направлениях позволяет достичь приемлемых результатов.

В конструкции плоского клина центральный выступ состоит из центральной пластины, которая имеет сужение в конце, с двумя реактивными струями, которые распространяются по внешним поверхностям пластины. Этот вариант может наращиваться вместе с длиной центрального клина. Также в данном случае существует расширенная возможность управления, используя изменение тяги любого из установленных в линию двигателей.



Просмотров: 5278


<<< Импеллер