Авиация Управление вектором тяги - Газодинамическое управление вектором тяги
23 января 2011Оглавление:
1. Управление вектором тяги
2. Газодинамическое управление вектором тяги
3. Принцип действия и конструкция струйного сопла УВТ для двигателя.
Высокой эффективности управления вектором тяги можно добиться с помощью газодинамического управления вектором тяги за счет асимметричной подачи управляющего воздуха в тракт сопла.
Газодинамическое сопло использует "струйную" технику для изменения эффективной площади сопла и отклонения вектора тяги, при этом механически сопло не регулируется. В этом сопле отсутствуют горячие высоконагруженные подвижные детали, оно хорошо компонуется с конструкцией ЛА, что уменьшает массу последнего.
Внешние контуры неподвижного сопла могут плавно вписываться в обводы самолета, улучшая характеристики малой заметности. В этом сопле воздух от компрессора может направляться в инжекторы в критическом сечении и в расширяющейся части для изменения соответственно критического сечения и управления вектором тяги.
В МАИ были проведены экспериментальные работы по управлению вектором тяги за счет взаимодействия "дешевого" атмосферного воздуха с основной струей. За счет перераспределения эжектируемого через боковые каналы воздуха происходит отклонение основной струи двигателя. Были разработаны и испытаны малогабаритные модельные образцы устройств с применением твердотопливных газогенераторов в качестве источников сжатого газа. В боковых каналах плоского эжектора, связанных с атмосферой, были установлены клапаны с электромагнитным управлением. Температура газа в газогенераторе составляла 2600 К, рабочее давление до 5..7 МПа. Развиваемая управляемая тяга 1.0 кН. Время переключения тяги из одного крайнего положения в другое не превышало 0.02 с. Удельная мощность управляющего сигнала на единицу тяги составляла не более 0.05..0.7 Вт/кгс.
Проведенные испытания показали возможность отклонения вектора тяги на углы ±20° при прилипании струи к боковой стенке эжекторного сопла.
В ЦИАМ проводились предварительные исследования на физико-математической модели сопла с газодинамическим управлением вектором тяги двигателя для учебно-тренировочного самолета в 2D постановке. В ТРДД для УТС наличие второго контура со сжатым и относительно холодным воздухом, отсутствие необходимости регулирования проходных сечений облегчает реализацию концепции сопла с газодинамическим управлением вектором тяги.
В исследуемом сопле выходной канал второго контура разделен продольными перегородками на четыре сектора с установленными на входе в каждый сектор устройствами регулирования расхода воздуха. Это сопло на режиме осевого истечения представляет собой сопло эжекторного типа с "жидкой" стенкой, однако в нем эжектируемый воздух поступает не из атмосферы, а из-за вентилятора, следовательно, имеет достаточно высокое давление. Стенка сопла первого контура разорвана сразу за его критическим сечением, поэтому выходящая из него струя газа расширяется, постоянно уменьшая к выходу площадь струи второго контура.
Для принятых значений параметров на этом режиме качество рассматриваемого варианта может быть выше, чем при раздельном истечении. Это возможно благодаря замене двух поверхностей трения на "жидкую" стенку, а также благодаря выравниванию поля скоростей на выходе вследствие частичного смешения потоков. Кроме того, такая схема сопла может обеспечить улучшенное протекание рабочей линии вентилятора на дроссельных режимах.
Для получения максимального отклонения потока один сектор подвода воздуха второго контура полностью перекрывается. В результате расход через второй сектор возрастает в два раза.
Отклонение струи происходит благодаря:
- неосевому истечению струи воздуха второго контура и действию ее на поток первого контура под углом в направлении к оси сопла;
- формированию на срезе сопла первого контура вблизи перекрытого сектора течения Прандтля-Майера и работе сопла как сопла с косым срезом.
В настоящее время ведутся работы над 3D вариантом такого сопла и сопла с использованием атмосферного воздуха. По предварительным оценкам рассматриваемые схемы сопел способны обеспечить эффективный угол отклонения вектора тяги ±20°.
Просмотров: 4224
|