Авиация Воздушно-реактивный двигатель - Прямоточный воздушно-реактивный двигатель

22 января 2011


Оглавление:
1. Воздушно-реактивный двигатель
2. Общие принципы работы ВРД
3. Прямоточный воздушно-реактивный двигатель
4. Турбореактивный двигатель
5. Двухконтурный турбореактивный двигатель
6. Винтовентиляторный двигатель
7. Пульсирующий воздушно-реактивный двигатель
8. Основные характеристики ВРД



Принцип действия и устройство ПВРД

Огневые испытания ПВРД в лаборатории NASA

Прямоточный воздушно-реактивный двигатель является самым простым в классе ВРД по устройству. Необходимое для работы двигателя повышение давления достигается за счёт торможения встречного потока воздуха.

Рабочий процесс ПВРД кратко можно описать следующим образом:

  • Воздух, поступая со скоростью полёта во входное устройство двигателя, затормаживается, его кинетическая энергия преобразуется во внутреннюю энергию — его температура и давление повышаются.
В предположении того, что воздух — идеальный газ, и процесс сжатия является изоэнтропийным, степень повышения давления выражается уравнением:
\frac {p} {p_o}=\bigg^{\frac {k} {k-1}}
где \,p — давление в полностью заторможенном потоке;
\,p_o — атмосферное давление;
\,M_n — полётное число Маха,
\,k — показатель адиабаты, для воздуха равный 1,4.
На выходе из входного устройства, при входе в камеру сгорания рабочее тело имеет максимальное на всём протяжении проточной части двигателя давление.
  • Сжатый воздух в камере сгорания нагревается за счёт окисления подаваемого в неё топлива, внутренняя энергия рабочего тела при этом возрастает.
  • Затем сначала сужаясь в сопле достигает звуковой скорости, а потом расширяясь — сверхзвуковой, рабочее тело ускоряется и истекает со скоростью большей, чем скорость встречного потока, что и создаёт реактивную тягу.
Схема устройства ПВРД на жидком топливе.
1. Встречный поток воздуха;
2. Центральное тело.
3. Входное устройство.
4. Топливная форсунка.
5. Камера сгорания.
6. Сопло.
7. Реактивная струя.
Схема устройства твёрдотопливного ПВРД.

Конструктивно ПВРД имеет предельно простое устройство. Двигатель состоит из камеры сгорания, в которую из диффузора поступает воздух, а из топливных форсунок — горючее. Заканчивается камера сгорания входом в сопло, как правило, суживающееся-расширяющееся.

С развитием технологии смесевого твёрдого топлива, оно стало применяться в ПВРД. Топливная шашка с продольным центральным каналом размещается в камере сгорания. Рабочее тело, проходя по каналу, постепенно окисляет топливо с его поверхности, и нагревается само. Использование твёрдого топлива ещё более упрощает конструкцию ПВРД: ненужной становится топливная система. Состав смесевого топлива для ПВРД отличается от используемого в РДТТ. Если для ракетного двигателя большую часть топлива составляет окислитель, то для ПВРД он добавляется лишь в небольшом количестве для активизации процесса горения. Основную часть наполнителя смесевого топлива ПВРД составляет мелкодисперсный порошок алюминия, магния или бериллия, теплота окисления которых значительно превосходит теплоту сгорания углеводородных горючих. Примером твёрдотопливного ПВРД может служить маршевый двигатель противокорабельной крылатой ракеты П-270 Москит.

Зависимость тяги ПВРД от скорости полёта определяется несколькими факторами:

  • Чем выше скорость полёта, тем больше расход воздуха через тракт двигателя, а значит, и количество кислорода, поступающего в камеру, что позволяет, увеличив расход горючего, повысить тепловую, а вместе с ней и механическую мощность двигателя.
  • Чем больше расход воздуха через тракт двигателя, тем выше создаваемая им тяга, в соответствии с формулой. Однако расход воздуха через тракт двигателя не может расти неограниченно. Площадь каждого сечения двигателя должна быть достаточной для обеспечения необходимого расхода воздуха.
  • С увеличением скорости полёта, в соответствии с формулой, возрастает степень повышения давления в камере сгорания, что влечёт за собой увеличение термического коэффициента полезного действия двигателя, который для идеального ПВРД выражается формулой:
\eta_{t}=\frac{\frac{k-1}{2}\cdot M_n^2}{1+\frac{k-1}{2}\cdot M_n^2}
Препарированный ПВРД «Тор» ракеты «Бладхаунд». Хорошо видны входное устройство и вход в камеру сгорания.
  • В соответствии с формулой, чем меньше разница между скоростью полёта и скоростью истечения реактивной струи, тем меньше тяга двигателя.

В общем, зависимость тяги ПВРД от скорости полёта, может быть представлена следующим образом: пока скорость полёта значительно ниже скорости истечения реактивной струи, тяга растёт с ростом скорости полёта, а с приближением скорости полёта к скорости истечения реактивной струи, тяга ПВРД падает, миновав некоторый максимум, соответствующий оптимальной скорости полёта.

В зависимости от скорости полёта ПВРД подразделяются на дозвуковые, сверхзвукрвые и гиперзвуковые. Это разделение обусловлено конструктивными особенностями каждой из этих групп.

Дозвуковые ПВРД

Дозвуковые ПВРД предназначены для полётов на скоростях с числом Маха от 0,5 до 1. Торможение и сжатие воздуха в этих двигателях происходит в расширяющемся канале входного устройства — диффузоре.

Эти двигатели характеризуются крайне низкой эффективностью. При полёте на скорости М=0,5 степень повышения давления в них) равна 1,186, вследствие чего их идеальный термический КПД) составляет всего 4,76 %, а с учётом потерь в реальном двигателе эта величина становится почти равной 0. Это означает, что на скоростях полёта при M<0,5 ПВРД неработоспособен. Но и на предельной для дозвукового диапазона скорости, при М=1 степень повышения давления составляет 1,89, а идеальный термический КПД — 16,7 %, что в 1,5 раза меньше чем у реальных поршневых ДВС, и вдвое меньше, чем у газотурбинных двигателей. К тому же, и поршневые, и газотурбинные двигатели эффективны при работе на месте.

По этим причинам дозвуковые прямоточные двигатели оказались неконкурентоспособными в сравнении с авиадвигателями других типов и в настоящее время серийно не выпускаются.

Сверхзвуковые ПВРД

СПВРД предназначены для полётов в диапазоне 1 < M < 5.

Торможение сверхзвукового газового потока происходит всегда разрывно — с образованием ударной волны, называемой также скачком уплотнения Процесс сжатия газа на фронте ударной волны не является изоэнтропийным, вследствие чего в нём имеют место необратимые потери механической энергии, и степень повышения давления в нём меньше, чем в идеальном — изоэнтропийном процессе. Чем интенсивнее скачок уплотнения, то есть чем больше изменение скорости потока на его фронте, — тем больше потери давления, которые могут превышать 50 %.

Процесс торможения сверхзвукового потока во входном устройстве конического течения, внешнего сжатия с тремя скачками уплотнения. М — график изменения числа Маха в потоке; p — график изменения статического давления.
Беспилотный разведчик Lockheed D-21B. ПВРД с осесимметричным входным устройством с центральным телом.
Плоские входные устройства внутреннего сжатия ПВРД крылатой ракеты воздух — земля ASMP

Потери давления удаётся минимизировать за счёт организации сжатия не в одном, а в нескольких последовательных скачках уплотнения меньшей интенсивности, после каждого из которых, скорость потока снижается, оставаясь сверхзвуковой. Это возможно, если все скачки являются косыми, фронт которых наклонён к вектору скорости потока. В промежутках между скачками параметры потока остаются постоянными. В последнем скачке скорость становится дозвуковой и дальнейшее торможение и сжатие воздуха происходит непрерывно в расширяющемся канале диффузора.

В случае, если входное устройство двигателя находится в зоне невозмущённого потока, например, в носовом окончании летательного аппарата, или на консоли на достаточном удалении от фюзеляжа, оно исполняется осесимметричным и снабжается центральным телом — длинным острым «конусом», выступающим из обечайки, назначение которого состоит в создании во встречном потоке системы косых скачков уплотнения, обеспечивающих торможение и сжатие воздуха ещё до поступления его в канал входного устройства — т. н. внешнее сжатие. Такие входные устройства называются также устройствами конического течения, потому что поток воздуха в них имеет коническую форму. Коническое центральное тело может быть снабжено механическим приводом, позволяющим перемещаться ему вдоль оси двигателя, оптимизируя тем самым торможение воздушного потока на различных скоростях полета. Такие входные устройства именуются регулируемыми.

При установке двигателя на нижней стенке фюзеляжа, или под крылом летательного аппарата, то есть в зоне аэродинамического влияния его элементов, обычно применяются плоские входные устройства двухмерного течения, имеющие прямоугольное поперечное сечение, без центрального тела. Система скачков уплотнения в них обеспечивается благодаря внутренней форме канала. Они называются также устройствами внутреннего или смешанного сжатия, так как внешнее сжатие частично имеет место и в этом случае — в скачках уплотнения, образованных у носового окончания и/или у передней кромки крыла летательного аппарата. Регулируемые входные устройста прямоугольного сечения имеют меняющие своё положение клинья внутри канала.

В сверхзвуковом диапазоне скоростей ПВРД значительно более эффективен, чем в дозвуковом. Например, на скорости М=3 для идеального ПВРД степень повышения давления по формуле составляет 36,7, что сравнимо с показателями самых высоконапорных компрессоров турбореактивных двигателей, а термический КПД теоретически) достигает 64,3 %. У реальных ПВРД эти показатели ниже, но даже с учётом потерь, в диапазоне полётного числа Маха от 3 до 5 СПВРД превосходят по эффективности ВРД всех других типов.

При торможении встречного потока воздуха он не только сжимается, но и нагревается, и его абсолютная температура при полном торможении выражается формулой:

T=T_o \cdot
где \,T_o — температура невозмущённого потока.

При М=5 и Тo=273°K температура заторможенного рабочего тела достигает 1638°К, при М=6 — 2238°К, а с учётом трения и скачков уплотнения в реальном процессе — ещё выше. При этом дальнейший нагрев рабочего тела за счёт сжигания топлива становится проблематичным из-за ограничений, накладываемых термической устойчивостью конструкционных материалов, из которых изготовлен двигатель. Потому скорость, соответствующая М=5 считается предельной для СПВРД

Гиперзвуковой прямоточный воздушно-реактивный двигатель

Экспериментальный гиперзвуковой летательный аппарат X-43
Иллюстрация газодинамических процессов в плоском ГПВРД с соплом SERN
Сжатие воздуха происходит в двух скачках уплотнения: внешнем, образованным у носового окончания аппарата, и внутреннем — у передней кромки нижней стенки двигателя. Оба скачка — косые и скорость потока остаётся сверхзвуковой.

Гиперзвуковым ПВРД называется ПВРД, работающий на скоростях полёта свыше 5М,.

На начало XXI в. этот тип двигателя является гипотетическим: не существует ни одного образца, прошедшего лётные испытания, подтвердившие практическую целесообразность его серийного производства.

Торможение потока воздуха во входном устройстве ГПВРД происходит лишь частично, так что на протяжении всего остального тракта движение рабочего тела остаётся сверхзвуковым. При этом большая часть исходной кинетической энергии потока сохраняется, а температура после сжатия относительно низка, что позволяет сообщить рабочему телу значительное количество тепла. Проточная часть ГПВРД расширяется на всём её протяжении после входного устройства. Горючее вводится в сверхзвуковой поток со стенок проточной части двигателя. За счёт сжигания горючего в сверхзвуковом потоке рабочее тело нагревается, расширяется и ускоряется, так что скорость его истечения превышает скорость полёта.

Двигатель предназначен для полётов в стратосфере. Возможное назначение летательного аппарата с ГПВРД — низшая ступень многоразового носителя космических аппаратов.

Организация горения топлива в сверхзвуковом потоке составляет одну из главных проблем создания ГПВРД.

Существует несколько программ разработок ГПВРД в разных странах, все — в стадии теоретических изысканий или предпроектных экспериментов.

Область применения ПВРД

ПВРД неработоспособен при низких скоростях полёта, тем более — при нулевой скорости. Для достижения начальной скорости, при которой он становится эффективным, аппарат с этим двигателем нуждается во вспомогательном приводе, который может быть обеспечен, например, твёрдотопливным ракетным ускорителем, или самолётом-носителем, с которого запускается аппарат с ПВРД.

Неэффективность ПВРД на малых скоростях полёта делает его практически неприемлемым для использования на пилотируемых самолётах, но для беспилотных, боевых, крылатых ракет одноразового применения, летающих в диапазоне скоростей 2 < M < 5, благодаря своей простоте, дешевизне и надёжности, он предпочтителен. Так же ПВРД используются в летающих мишенях. Основным конкурентом ПВРД в этой нише является ракетный двигатель.

Ядерный ПВРД

Ядерный ПВРД «Плутон»

Во второй половине 50-х годов ХХв, в эпоху холодной войны В США и СССР разрабатывались проекты ПВРД с ядерным реактором.

Источником энергии этих двигателей является не химическая реакция горения топлива, а тепло, вырабатываемое ядерным реактором, размещённым на месте камеры сгорания. Воздух из входного устройства в таком ПВРД проходит через активную зону реактора, охлаждает его и нагревается сам до температуры около 3000 К, а затем истекает из сопла со скоростью, сравнимой со скоростями истечения для самых совершенных жидкостных ракетных двигателей. Назначение летательного аппарата с таким двигателем — межконтинентальная крылатая ракета — носитель ядерного заряда. В обеих странах были созданы компактные малоресурсные ядерные реакторы, которые вписывались в габариты большой ракеты. В США по программам исследований ядерного ПВРД «Pluto» и «Tory» в 1964 были проведены стендовые огневые испытания ядерного прямоточного двигателя «Tory-IIC». Лётные испытания не проводились, программа была закрыта в июле 1964. Одной из причин можно назвать совершенствование конструкции баллистических ракет с традиционными химическими ракетными двигателями, которые вполне обеспечили решение боевых задач без применения схем с ядерными ПВРД.



Просмотров: 25763


<<< ВК-2
ВСУ-10 >>>